Structural Health And Rupture Detection (SHARD)

Team members (CSE): Julian Herrera and Matthew Manley

Team members (AEE/MEE): Matthew Meesit, John Bruce, Paul Awad

CSE Faculty: Marius Silaghi

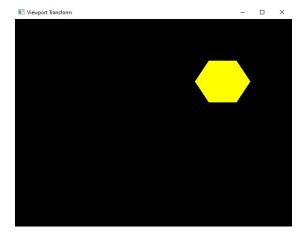
Client: Dr. Willard/AEE Senior Design GSAs

Client and Advisor Meeting Dates

Client: Dr. Willard

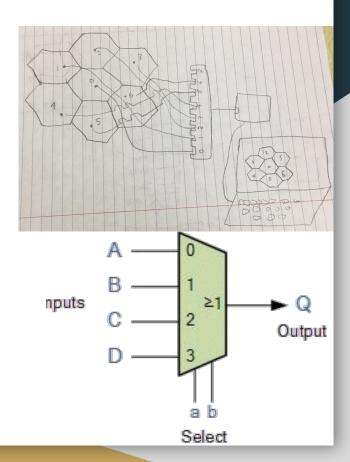
- September 9, 2022 Discussed the overall project (including non-CSE) and its goals and objectives
- September 16, 2022 Discussed the overall project's system requirements and the sensors involved.
- September 23, 2022 Discussed more about the sensors and hardware capabilities.

Advisor: Dr. Silaghi

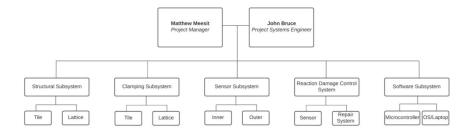

- September 20, 2022 Met with Dr. Silaghi to discuss the necessary components of the project.
- October 4, 2022 Met with Dr. Silaghi to discuss our progress.

Overview of accomplished tasks

- GUI API decision
- Microcontroller/hardware system design
- Requirements
- Design
- Test Plan

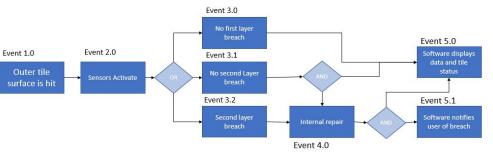

GUI API Decision - OpenGL

```
9 /* Initialize OpenGL Graphics */
10 Fwoid initGL() {
       // Set "clearing" or background color
       glClearColor(0.0f, 0.0f, 0.0f, 1.0f); // Black and opaque
13 4
14
15 ⊟void display() {
       qlClear(GL COLOR BUFFER BIT); // Clear the color buffer with current clearing color
       glBegin (GL POLYGON);
                                       // These vertices form a closed polygon
          glColor3f(1.0f, 1.0f, 0.0f); // Yellow
          glVertex2f(0.4f, 0.2f);
          glVertex2f(0.6f, 0.2f);
          glVertex2f(0.7f, 0.4f);
          glVertex2f(0.6f, 0.6f);
24
          glVertex2f(0.4f, 0.6f);
          glVertex2f(0.3f, 0.4f);
26
       glEnd();
       qlFlush(); // Render now
29 4
31 /* Main function: GLUT runs as a console application starting at main() */
32 ⊟int main(int argc, char** argv) {
       glutInit(&argc, argv);
                                       // Initialize GLUT
34
       glutInitWindowSize(640, 480); // Set the window's initial width & height - non-square
       qlutInitWindowPosition(50, 50); // Position the window's initial top-left corner
36
       glutCreateWindow("Viewport Transform"); // Create window with the given title
       glutDisplayFunc (display);
                                      // Register callback handler for window re-paint event
       initGL();
                                      // Our own OpenGL initialization
       glutMainLoop();
                                      // Enter the infinite event-processing loop
40
       return 0;
41 -}
```

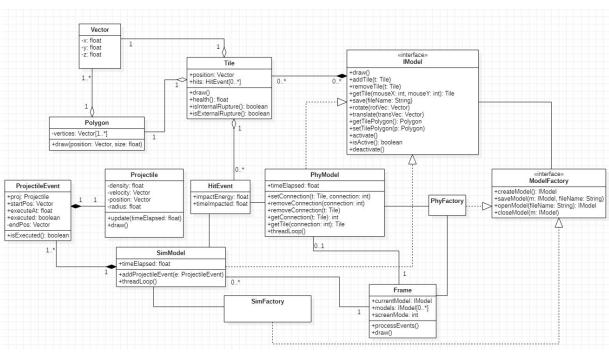


Microcontroller/Hardware System Design

- 16 sensors max connected to one multiplexer
- One multiplexer connected to raspberry pi
- Raspberry pi connected to laptop
- Each sensor will be connected to a specific pin number on the multiplexer, which allows the user to specify which tile on the virtual model corresponds to which tile on the physical structure

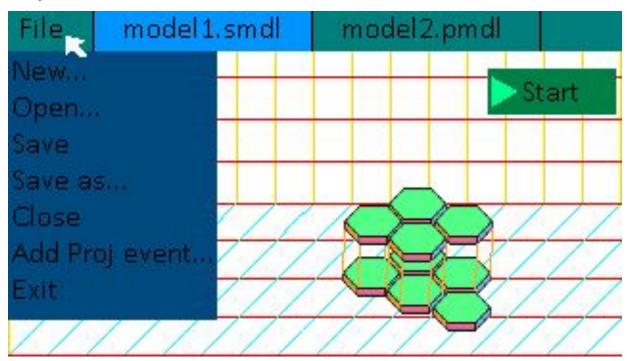


Interdisciplinary Team Design



System Architecture

Concept of Operations


UML Diagram

Mockup of GUI

Mockup of GUI

Sample Test Cases

Code	TC012	
Description	Simulate using projectile events	
Preconditions	Model exists	
Procedure	Create a projectile event by entering in meteoroid speed, angle, and location.	
Valid Input	User enters in meteoroid velocity, density, starting position, and time of collision	
Invalid Input	User enters in non-numeric data	
Expected Output	Simulation shows projectile event three-dimensionally and whether or not the collision created a dent or rupture	

Milestone 2 Tasks

Task		Julian	Matthew
1.	Increase understanding of the correlation between the physical sensors with the virtual tiles	50%	50%
2.	Experiment with multiplexer and raspberry pi connection with each other and with the laptop.	50%	50%
3.	Create the basic structure of GUI	50%	50%

Questions?